

Producer Ventilation System Planning Worksheet

Joe Darrington | former SDSU Extension Livestock Environment Associate Casey Zangaro | former SDSU Graduate Research Assistant

Worksheet for calculating barn or room ventilation rates and inlet needs. For more information view the article "Basic Ventilation System Design for Pork Producers" on <u>extension.sdstate.edu</u>.

Step 1 – Determine Ventilation Rates

Table 1: Ventilation rates per animal per weather cfm/ head Table 2: Total ventilation rates per barn per weather cfm/unit

Pig Weights	Cold	Mild	Hot	Pig Weights	Cold	Mild	Hot
·		·				·	
Midwest Plan S	Service, MW	PS-32		Table 1 multiplie	ed by total n	umber in barn	

Step 2 – Determine Inlet Area Requirement

Design Inlet Velocity is 800-1000 ft/min. Often we use 900 ft/min for initial calculations.

To calculate area divide flowrate by velocity Example: Cold weather rate for 75 lb pigs

Area (f^2) = $\frac{Barn Flowrate (cfm)}{Design velocity (ft/min)}$

Table 3: Total inlet area building per barn per weather (ft²)

Cold	Mild	Hot

Divide Table 2 by target inlet rate of 900 ft/min

Step 3 – Determine the required number of inlets to match the smallest area requirement

Inlet #1	Inlet #2
max opening:	max opening:
max area opening:	max area opening:
max area opening:	max area opening:
min area opening:	min area opening:

Divide the lowest inlet area requirement (Top left cell Table 3) by the minimum area opening Divide the highest inlet area requirement (Bottom right Table 3) by the maximum area opening

Alternatively, you can also choose to divide the inlet area of the last stage before moving to tunnel ventilation by the maximum area open to solve for the number of inlets.

Table 4: Number of Inlets Required with Comparison

Minimum Ventilation:	Minimum Ventilation:
Maximum Ventilation:	Maximum Ventilation:
Total inlets:	Total inlets:

When choosing the number of inlets in a tunnel ventilated system always select the minimum ventilation rate number to avoid having to close up inlets in the wintertime. Since the barn is tunnel ventilated during hot weather the maximum ventilation rate will be drawn through the wall inlet rather than the ceiling inlets.

Step 4 – Determining Stage Opening of Ceiling Inlets

Table 5 (Inlet #1)			Table 5 (Inlet #2)				
Pig Weights	Cold*	Mild*	Hot*	Pig Weights	Cold*	Mild*	Hot*
				. <u></u>			
* Total inlet Sta	age Opening	per weather		* Total inlet Sta	age Opening	per weather	

Divide the total inlet area requirement for each stage by the maximum inlet area times the number of inlets.

The above worksheet can be used for planning new or remodeling old facilities. Steps 3 and 4 are set up to allow the comparison of 2 different inlets, users don't have to compare different inlets.

Producer Ventilation System Planning Worksheet Examples

Joe Darrington | former SDSU Extension Livestock Environment Associate Casey Zangaro | former SDSU Graduate Research Assistant

Example: 2700 head finish swine 75 pounds to 300 pounds, Upper Midwest, tunnel ventilation hot weather

Step 1 – Determine Ventilation Rates

Table 1: Ventilation rates per animal per weather cfm/ head

Pig Weights	Cold	Mild	Hot	
75 lbs	7	24	75	
<u>300 lbs</u>	11	37.5	135	

Table 2: Total ventilation rates per barn per weather cfm/unit

Pig Weights	Cold	Mild	Hot		
75 lbs	18,900	64,800	202,500		
<u>300 lbs</u>	29,700	101,250	364,500		

Midwest Plan Service, MWPS-32

Table 1 multiplied by total number in barn

Step 2 – Determine Inlet Area Requirement

Design Inlet Velocity is 800-1000 ft/min. Often we use 900 ft/min for initial calculations.

To calculate area divide flowrate by velocity Example: Cold weather rate for 75 lb pigs

Area (f²) = $\frac{Barn Flowrate (cfm)}{Design velocity (ft/min)}$

Table 3: Total inlet area building per barn per weather (ft²)

Pig Weights	Cold	Mild	Hot
75 lbs	21	72	225
300 lbs	33	112.5	405

Divide Table 2 by target inlet rate of 900 ft/min

Step 3 – Determine the required number of inlets to match the smallest area requirement

Inlet #1	Inlet #2
max opening: 9 in.	max opening: <u>8 in.</u>
max area opening: <u>459 in²</u>	max area opening: <u>432 in²</u>
max area opening: <u>3.18 ft²</u>	max area opening: <u>3 ft²</u>
min area opening: <u>0.17 ft²</u>	min area opening: <u>0.19 ft²</u>

Divide the lowest inlet area requirement (Top left cell Table 3) by the minimum area opening Divide the highest inlet area requirement (Bottom right Table 3) by the maximum area opening

Alternatively, you can also choose to divide the inlet area of the last stage before moving to tunnel ventilation by the maximum area open to solve for the number of inlets.

Table 4: Number of Inlets Required with Comparison

Minimum Ventilation: 123.5 inlets	Minimum Ventilation: 110 inlets
Maximum Ventilation: <u>127.3 inlets</u>	Maximum Ventilation: <u>135 inlets</u>
Total inlets: 123	Total inlets: 110

When choosing the number of inlets in a tunnel ventilated system always select the minimum ventilation rate number to avoid having to close up inlets in the wintertime. Since the barn is tunnel ventilated during hot weather the maximum ventilation rate will be drawn through the wall inlet rather than the ceiling inlets.

Step 4 – Determining Stage Opening of Ceiling Inlets

Table 5 (Inlet #1)			Table 5 (Inlet #2)				
Pig Weights 75 lbs	Cold* 5.30%	Mild* 18.20%	Hot* 57.10%	Pig Weights 75 lbs	Cold* 6.3%	Mild* 21.7%	Hot* 67.9%
<u>300 lbs</u>	8.30%	28.50%	103.7%*	<u>300 lbs</u>	10%	34%	122%*
* Total inlet Sta	age Opening	per weather		* Total inlet Sta	ige Opening	per weather	
				For example at			
			% Inlet Open = $\frac{21 \text{ ft}^2 \text{ (table 3)}}{110 \text{ Inlets } * 3 \frac{\text{ft}^2}{\text{inlet}}} * 100\% = 6.$			00% = 6.3%	

Divide the total inlet area requirement for each stage by the maximum inlet area times the number of inlets.

The above worksheet can be used for planning new or remodeling old facilities. Steps 3 and 4 are set up to allow the comparison of 2 different inlets, users don't have to compare different inlets.

SDSU Extension is an equal opportunity provider and employer in accordance with the nondiscrimination policies of South Dakota State University, the South Dakota Board of Regents and the United States Department of Agriculture.

Learn more at extension.sdstate.edu.